Anisotropy of the optical conductivity of high-T_c cuprates

D. van der Marel

Laboratory of Solid State Physics, Materials Science Centre, Nijenborgh 4, 9747 AG Groningen, The Netherlands

(Received 14 April 1999)

The optical conductivity along (σ_{xx}) and perpendicular (σ_{zz}) to the planes is calculated assuming strong k-dependence of the scattering rate and the c-axis hopping parameter. The closed analytical expressions for $\sigma_{xx}(\omega)$ and $\sigma_{zz}(\omega)$ are shown to be integrable at low and high frequencies. A large and qualitatively different frequency dependence for both polarizations follows directly from the model. The expression for $\sigma_{xx}(\omega)$ has an effective scattering rate proportional to frequency, and can be easily generalized to provide a simple analytical expression, which may replace the Drude formula in the case of non-Fermi liquids.

$$\gamma(k_f) = 1/\tau + \Gamma \sin^2(2\theta).$$

Inserting this expression for the scattering rate in Eq. (1), substituting $\xi = e^{2i\xi}$, carrying out the corresponding contour integral, and using Cauchy’s principal-value method, we obtain the planar conductivity

$$\sigma_{xx}(\omega) = \frac{\sigma_{xx,0}}{\sqrt{1 - i\omega\tau\sqrt{1 + \Gamma - i\omega\tau}}},$$

where $\sigma_{xx,0} = n e^2 \tau/m_{xx}$. In the approximation of Ref. 5, valid close to the zone diagonals, the term $(\omega + i\Gamma)^{1/2}$ is replaced with the constant $(i\Gamma)^{1/2}$, resulting in nonintegrable behavior of $\Re \sigma_{xx}(\omega)$ at high frequencies. I&M adopted the model assumption, that $1/\tau$ should have a quadratic temperature dependence, $1/\tau = T^2/T_0$, as in a classical Fermi liquid. (But note, that only the zone-diagonal directions have a scattering rate which becomes zero at low temperature in their model, which is anything but Fermi-liquid behavior). The dc-resistivity then has the linear temperature dependence $\rho = \Gamma^{1/2}T_0^{1/2}m_{xx}T/(ne^2)$, observed in optimally doped cuprates.

Let us briefly investigate some of the main analytical properties of the above result. First we notice that $\sigma(\omega) = \sigma(-\omega)^*$ is satisfied. Let us now consider the frequency dependent scattering rate, using the definition $1/\tau^* (\omega) = \omega \Re \sigma/\Im \sigma$, commonly used for the analysis of optical spectra of high-T_c superconductors and heavy Fermion systems

$$\frac{1}{\tau^* (\omega)} = \frac{1 + \Gamma \sqrt{1 + (\omega\tau)^2}}{\tau^2 \sqrt{1 + (\omega\tau)^2 + (1 + \Gamma \tau)^2}}.$$

At intermediate frequencies, $1/\tau^* \ll \omega \ll 1/\Gamma$, the scattering rate $1/\tau^* (\omega) \approx \omega$. The high-frequency limiting behavior of these quantities gives

$$\lim_{\omega \to \infty} \sigma_{xx}(\omega) = \frac{n e^2}{m_{xx}} \frac{i}{\omega + i(1/\tau + 1/\Gamma/2)}.$$

The low-frequency limiting behavior corresponds to a Drude conductivity.
However, the “Drude scattering rate” resulting from such the dc conductivity s defined as

$$
\sigma_d(\omega) = \lim_{\omega \to 0} \sigma_{xx}(\omega) = \frac{Z^*(0)ne^2}{m_{xx}} \frac{i}{\omega + i\tau^*(0)}
$$

with the scattering rate $\tau^*(0)$ and the spectral weight $Z^*(0)$ defined as

$$
\tau^*(0) = \frac{\tau \Gamma \tau + 2}{2\Gamma \tau + 1} = \frac{T_0}{2T^2} + \frac{1}{2T} + \cdots,
$$

$$
Z^*(0) = \frac{2}{\sqrt{1 + \frac{\tau^2}{\Gamma}}} = \frac{2T}{\sqrt{T_0}} - \frac{T^3}{(\Gamma T_0)^{3/2}} + \cdots,
$$

where the series expansion is relevant for at low temperatures, where τ diverges. I&M showed that the phase angle $\omega \tau^*(0) = \text{Im}(\sigma(\omega)/\text{Re}(\sigma(\omega))$ is proportional to ω at low frequencies, and crosses over to a constant value 1 at intermediate frequencies. Taken together, we see that σ_{xx} is integrable, and satisfies

$$
\int_0^\infty \text{Re}(\sigma_{xx}(\omega) d\omega = \frac{\pi ne^2}{2m_{xx}}.
$$

We see, that for $T \leq \sqrt{T_0} \Gamma$, which is of the order of 1000 K, $1/\tau^*(0)$ is proportional to T^2, and that the low-frequency spectral weight $Z^*(0)$ increases linearly with temperature. I&M associated $Z^*(0)$ with an effective carrier number proportional to T. It is amusing, that, apart from a factor of two, the inverse Hall constant derived in Ref. 5 is precisely this spectral weight: $1/R_H = B\sigma_{zz}/j_{xx} = 2eZ^*(0)/n$.

In various papers a linear temperature dependence of the scattering rate of the low-frequency Drude tail has been reported. However, a fit to Hagen-Rubens behavior provides the dc conductivity $\sigma_{xx} = Z^*(0)ne^2\tau^*(0)/m_{xx}$. Usually a temperature independent Drude spectral weight is imposed for the purpose of minimizing the number of fit parameters. However, the “Drude scattering rate” resulting from such a fit is not a faithful representation of the actual linewidth of $\sigma_d(\omega)$ if $Z^*(0)/\tau < 1$. Instead one can employ the fact that $1/\tau^*(0) = \omega \Re(\sigma_{xx}(\omega)/\text{Im}(\sigma_{xx}(\omega))$ and $\tau^*(0) = \text{Im}(-ne^2/[m_{xx}\omega\sigma_{xx}(\omega)])$ can be obtained from a careful analysis of the dc limiting behavior of the experimentally measured real and imaginary part of the conductivity. This should reveal both the quadratic temperature dependence of $1/\tau$ and the linear temperature dependence of the low-frequency spectral weight. Although this behavior has, to the best of my knowledge, not been mentioned explicitly in the literature, it may be contained in the experimental infrared data reported by various groups. This aspect certainly requires further scrutiny, and calls for high-precision optical experiments in the far-infrared range.

In Fig. 1 the evolution of $\sigma_{xx}(\omega)$ with temperature is displayed, mimicked by varying the parameter $1/\tau$. This behavior is identical to what has been observed experimentally for the in-plane optical conductivity. Note also, that the total spectral weight under the optical conductivity curves is

![Image](https://example.com/image.png)

FIG. 1. Optical conductivity, σ_{xx}, using Eq. (3), with parameters $h\Gamma=1.24$ eV and $h/\tau=0.124$ meV (solid curves, $T=14$ K), $h/\tau=1.24$ meV (dashed curves, $T=44$ K), and $h/\tau=12.4$ meV (dotted curves, $T=140$ K). The temperatures correspond to $1/\tau = T^2/T_0$, adopting the value $T_0=12$ meV from Ioffe and Millis. Inset: Frequency dependent scattering corresponding to the conductivities displayed in the main panel.

the same for all values of $1/\tau$.

Let us now investigate the behavior of σ_{zz}. Recently Xiang and Wheatley calculated the c-axis penetration depth assuming d-wave pairing, and assuming a model for the c-axis transport where momentum parallel to the planes, $k_{||}$, is conserved. Based on local-density approximation (LDA) band theoretical results they argued that for high-temperature superconductors (HTSC’s) with a simple (non-body-centered) tetragonal structure, $t_{\perp} \propto \theta(k,a) - \cos(k,a)\theta$, leading to a T^2 powerlaw at low temperature. Following the approach used in Refs. 3–5 this $k_{||}$ dependence is evaluated as a function of $k_{||}$ around the Fermi surface.

The c-axis conductivity is, in leading orders of t_{\perp}, 13

$$
\sigma_{zz}(\omega) = \frac{e^2d_{xx}}{\pi^2h^4} \int_0^{2\pi} d\theta \frac{t_{\perp}(\theta)^2}{-i\omega + \gamma(\theta)}.
$$

(9)

A simple hole, or electron-type surface, is circular and has the following $k_{||}$ dependence in leading orders of the harmonic expansion:

$$
t_{\perp}(k_{||}) = t_0 \sin^2(2\theta).
$$

Note, that the expression for σ_{zz} now contains a weighting factor proportional to $\sin^2(\theta)$, which is sharply peaked along $(0, \pm \pi)$ and $(\pm \pi, 0)$ again. The integral can be solved using Cauchy’s principal-value method, with the result

$$
\frac{\sigma_{zz}(\omega)}{\sigma_{zz,0}} = 1 + 2\Omega^2 \left[\sqrt{1 + \Omega^2 - 1} \right],
$$

(11)

where $\Omega = \sqrt{(1-i\omega\tau)/(\Gamma \tau)}$, and $\sigma_{zz,0} = e^2d_{xx}t_0^2/(\pi h^4 \Gamma)$. I&M needed a value of $h\Gamma$ of about 0.15 eV to fit $\sigma_{xx}(\omega)$ of Y-Ba-Cu-O. In fact, if we use Eq. (3) for $\sigma_{xx}(\omega)$, a larger value is required, $h\Gamma \approx 1.2$ eV, to produce a good fit. Both values place the c-axis transport well inside the dirty limit region, if we adopt Eq. (11) as an expression representative of the c-axis optical conductivity in the normal state of high-T_c superconductors.
Clearly, properties, in Fig. 2 both are a rather lengthy expression, which is not very illuminating. The analytical formula for $1/\tau^*(\omega)$ according to Eq. (11) is a rather lengthy expression, which is not very illuminating. The real part of this expression and the corresponding analytical properties of s_0 guarantees that σ_A is integrable, and satisfies

\begin{equation}
\frac{\sigma_{zz}(\omega)}{2\sigma_{zz,0}} = (1 + 2\Omega^2)(1 - 8\Omega^4 - 8\Omega^2) + 16\Omega^3(1 + \Omega^2)^2.
\end{equation}

The real part of this expression and the corresponding $1/\tau^*(\omega)$ are displayed in Fig. 2, using the same parameters as before. We observe from this figure, that for the body-centered sytems $\sigma_{zz}(\omega)$ is somewhat more peaked. This results from the fact that contributions from the regions close to the saddle points are suppressed in this case.

Equation (1) for σ_{zz} suggests a form which is of general use in other materials (not necessarily two-dimensional) to analyze the optical conductivity of non-Fermi liquids with a simple analytical formula

\begin{equation}
\sigma_A(\omega) = \frac{\omega_p^2}{4\pi} \frac{i}{(\omega + i\tau_0)^{1-2\alpha}(\omega + i\Gamma)^{2\alpha}}.
\end{equation}

If we set $\tau \to \infty$, and consider only $\omega \ll \Gamma$, this corresponds to the expression derived by Anderson based on the Luttinger liquid model for high-T_c superconductors. The notation for the coefficient α was adopted accordingly. In Anderson’s paper Fermi-liquid response is restored for $\alpha \to 0$, as in the present case. Let us briefly investigate some of the main analytical properties of σ_A. Again $\sigma_A(\omega) = \sigma_A(-\omega)^*$ is satisfied. The high-frequency limiting behavior of σ_A

\begin{equation}
\lim_{\omega \to \infty} \frac{\sigma_A(\omega)}{\omega_p^2} = \frac{1}{4\pi} \frac{(1 + 2\alpha)}{(1 - 2\alpha)\gamma + 2\alpha\Gamma - i\omega}
\end{equation}

resulting in the following expression for the c-axis optical conductivity:

\begin{equation}
\sigma_{zz}(\omega) = \frac{1}{2\sigma_{zz,0}} = (1 + 2\Omega^2)(1 - 8\Omega^4 - 8\Omega^2) + 16\Omega^3(1 + \Omega^2)^2.
\end{equation}

The lowest-order harmonic expansion of the angular dependence in this case is

\begin{equation}
t_{zz}(k_1) = t_0 \sin^2(4\theta)
\end{equation}

FIG. 2. Optical conductivity using the parameters $\hbar/\tau = 12.4$ meV and $\hbar\Gamma = 1.24$ eV. Solid curves: σ_{zz}, using Eq. (3). Dashed: σ_{zz} for the simple tetragonal structure using Eq. (11). Dashed-dotted: σ_{zz} for the body-centered tetragonal structure using Eq. (14). Inset: Frequency dependent scattering corresponding to the conductivities displayed in the main panel.

FIG. 3. Optical conductivity using Eq. (15), with the parameters $\hbar/\tau = 1.24$ meV and $\hbar\Gamma = 1.24$ eV, and $\alpha = 0.8, 0.4, 0.0, -0.4, and -0.8$. Insets: Frequency dependent scattering rate and spectral weight factor.
\[
\int_0^\infty \Re \sigma_A(\omega) d\omega = \frac{1}{8} \omega_p^2.
\]

At the low-frequency end
\[
\lim_{\omega \to 0} \sigma_A(\omega) = \frac{\omega_p^2}{4\pi} \frac{\tau^{(1-2\alpha)}\Gamma - 2\alpha}{1 - i \omega[(1-2\alpha)\tau + 2\alpha\Gamma]}.
\]

which corresponds to a narrow Drude peak with an effective carrier lifetime \(\tau^*(0) = (1-2\alpha)\tau + 2\alpha\Gamma\). The frequency dependent scattering rate \(1/\tau^*(\omega)\) crosses over to a linear frequency dependence for \(1/\tau^*(\omega)\) and acquires a constant value \((1-2\alpha)\tau + 2\alpha\Gamma\) for \(\omega \to \infty\). Hence the linear frequency dependence of the scattering rate is a robust property of the above phenomenological expression for \(\sigma_A\). To illustrate this point, in Fig. 3, \(\sigma_A(\omega)\), and the corresponding \(1/\tau^*(\omega)\) and \(1/Z^*(\omega)\) are displayed for a number of different values of \(\alpha\). The Luttinger liquid analysis of experimental spectra\(^{2,26}\) gave \(\alpha = 0.15 \pm 0.05\). The analysis of Ioffe and Millis corresponds to \(\alpha = 0.25\), which is reasonably close.

In conclusion, the combination of the \(k\)-dependent scattering rate, and the \(k\) dependence of the interplane hopping parameter known from band theory, leads to a quantitative description of the strongly anisotropic optical properties found in the high-\(T_C\) cuprates. Both the anomalous in-plane optical conductivity and the \(c\)-axis conductivity follow from the assumption of the \(k\)-dependent scattering rate, which has been recently proposed by Stojkovich and Pines,\(^{4}\) and Ioffe and Millis.\(^{5}\) Closed analytical expressions were obtained for the optical conductivity, which are really quite simple, and were further extended and discussed in a phenomenological framework of non-Fermi liquids. The present result corresponds closely to experimental data of \(\sigma_{xx}(\omega)\),\(^{14,24–26}\) including the high-frequency cutoff and the low-frequency crossover to Drude behavior as can be seen from the saturation, and of \(\sigma_{zz}(\omega)\).\(^{15–20}\)

It is a pleasure to acknowledge stimulating discussions with W. N. Hardy, D. Dulic, and A. J. Mills and useful comments on the manuscript by H. J. Molegraaf and M. Grüninger.
