Infrared spectroscopy on $Y_{1-x}RE_xBa_2Cu_{3-y}Zn_yO_6$
(RE = Pr, Gd; $x = 0$ and 0.8; $y = 0$ and ≈ 0.15)

M. Grüniger*a,*, D. van der Marel*, H.P. Geserichb, Th. Wolfc, A. Erbd, T. Koppc

a Laboratory of Solid State Physics, Materials Science Center, University of Groningen, 9747 AG Groningen, The Netherlands
b AP, University of Karlsruhe, Germany
c ITP, Forschungszentrum Karlsruhe, Germany
d DPMC, University of Geneva, Switzerland
e TKM, University of Karlsruhe, Germany

Abstract

Far- and mid-infrared properties of antiferromagnetic $Y_{1-x}RE_xBa_2Cu_{3-y}Zn_yO_6$ (RE = Pr, Gd; $x = 0$ and 0.8; $y = 0$ and ≈ 0.15) were investigated by infrared reflection and transmission measurements ($\mathbf{k}||c$-axis). All six phonon modes of E_u symmetry and several multi-phonon bands were observed. Zn substitution causes phonon side bands and a surprising temperature dependence of multi-phonon bands, possibly due to spin-lattice interactions. All compounds show several features in the mid-infrared range that might be related to bimagnon-plus-phonon absorption. Published by Elsevier Science B.V.

Keywords: Antiferromagnetic cuprates; Multi-phonons; Magnons; Zn substitution; YBa$_2$Cu$_3$O$_6$; Far-infrared spectroscopy

1. Introduction

All cuprate high-T_c superconductors show also insulating, antiferromagnetic phases. Due to the high resolution and the wide frequency range, infrared spectroscopy is an excellent tool to observe the various low-energy excitations in these so-called parent compounds. In addition to phonon features, it is also possible to study, for instance, magnetic excitations such as the bimagnon-plus-phonons recently described in La$_2$CuO$_4$ [1, 2]. In this paper, we study the influence of rare earth and Zn substitution on (multi-)phonon and bimagnon-plus-phonon absorption.

2. Experimental

Single crystals of $RE_yY_{1-x}Ba_2Cu_3O_6$ (RE = Pr, Gd; $x = 0$ and 0.8) were grown in Y_2O_3 stabilized ZrO$_2$ crucibles as described elsewhere [3]. In the case of YBa$_2$Cu$_3$-yZn$_y$O$_6$ [4], the melt nominally contained 5% of Zn, and hence we obtain $0.1 \leq y \leq 0.2$. The samples had typical dimensions of $1 \times 1 \text{ mm}^2$ in the ab-plane. For the transmission measurements the samples need to be thin in the c-direction. The Zn-free crystals were 68 and 50 μm (YBCO$_6$), 126 μm (PrYBCO$_6$) and 231 μm (GdYBCO$_6$) thick, whereas the YBa(CuZn)O$_6$ sample was polished down to 35 μm. The samples were annealed in flowing argon in order to exclude doping by excess oxygen. The reflection and transmission measurements were performed in two
different laboratories using two Bruker 113v Fourier spectrometers in the spectral range from 6 meV to 1 eV. All measurements were carried out with \(k \parallel c \) and the electric field vector parallel to the \(ab \)-plane. The samples were mounted on a diaphragm in a He-flow cryostat that allowed for measurements in the temperature range from 4 to 485 K. The transmission (reflection) measurements were calibrated against the same diaphragm (using a gold mirror as a reference).

3. Results

3.1. Far-infrared

The reflectivity of YBa\(_2\)(CuZn)O\(_6\) at \(T = 4 \) K is plotted in the upper panel of Fig. 1. The spectrum of the optical conductivity \(\sigma(\omega) \) shown in the lower panel was obtained by a Lorentz fit of the reflectivity data. At first sight, the spectrum is typical for an insulator and shows five of the six phonons of \(E_g \) symmetry. As the sample is only 35 \(\mu m \) thick, we observe interference fringes in the frequency ranges of low absorption, i.e. below 100 cm\(^{-1}\) and between the phonons. Here, we want to concentrate on the phonon peaks at 115 and 600 cm\(^{-1}\), as these show structures that are induced by Zn impurities: the phonon side bands at 121 and at 608 cm\(^{-1}\). The temperature dependence of these features is plotted on a larger scale in Fig. 2. In \(\sigma(\omega) \) these side bands give rise to an asymmetric line shape, showing up in the tails. The peak at 600 cm\(^{-1}\) corresponds to an in plane Cu–O–Cu bond stretching mode. This mode is extremely sensitive to the Cu–O distance [5, 6], as can be seen from the strong temperature dependence of the eigenfrequency, and hence it is plausible that Zn impurities give rise to a side peak. The broad shoulder at about 625 cm\(^{-1}\) is present also in Zn-free YBCO\(_6\) and will be discussed in more detail in a forthcoming paper [7]. The peak at 115 cm\(^{-1}\) seems to be the lowest phonon mode and has therefore been interpreted as a Ba mode by most authors, usually arguing that the Ba mode should be the lowest one, as Ba is the heaviest ion in

![Fig. 1. Upper panel: Reflectivity of a thin single crystalline platelet (d = 35 \(\mu m \)) of YBa\(_2\)(CuZn)O\(_6\) for \(E \parallel ab \) at \(T = 4 \) K. Lower panel: \(\sigma(\omega) \) as obtained from a Lorentz fit.](image1.png)

![Fig. 2. Enlarged plot for two phonons of \(R(\omega) \) and \(\sigma(\omega) \) of a thin single crystalline platelet (d = 35 \(\mu m \)) of YBa\(_2\)(CuZn)O\(_6\) for \(E \parallel ab \) at \(T = 4 \) (solid line), 100 (dashed), 200 (dotted) and 300 K (dashed–dotted). Upper left panel: Left arrow: sixth phonon of \(E_g \) symmetry. Right arrow: side peak of the Cu(1) phonon mode induced by Zn impurities. Upper right panel: Left arrow: side peak of the in plane Cu–O–Cu stretching mode induced by Zn impurities. Right arrow: shoulder present in all samples, not related to the Zn impurities.](image2.png)
the system. However, the weakly infrared active sixth phonon of \(E_u \) symmetry was found at a still lower frequency of 83 cm\(^{-1} \) in the far-infrared transmission spectrum of YBCO\(_6\) [8]. In the reflectivity data it can be identified with the dip in the interference pattern at 83 cm\(^{-1} \) (see left arrow in Fig. 2). Weak absorption causes a dip in an interference maximum and a peak in a minimum. The observation of a lower mode at 83 cm\(^{-1} \) presents a new candidate for the Ba mode. This assignment is supported by lattice dynamical calculations [9], which show only a small oscillator strength for the Ba mode. In this case, the phonon peak at 115 cm\(^{-1} \) originates from the motion of the copper ions on the Cu(1) site (the ‘chain’ site in YBCO\(_5\)) [10]. The side band at 121 cm\(^{-1} \) can thus be understood easily if we assume that some of the substituted Zn ions occupy the Cu(1) sites.

3.2. Mid-infrared

Phonons are the only absorption processes below the charge transfer gap at 1.6 eV that are strong enough to be observed in reflectivity measurements of the antiferromagnetic cuprates. However, in the transmission spectra of thin single crystalline platelets many other interesting features can be found. Fig. 3 shows mid-infrared transmission data of YBa(CuZn)O\(_6\), PrYBCO\(_6\) and GdYBCO\(_6\) in the frequency range above the phonons. All the three spectra show a very rich structure. The differences in absolute value are mainly due to the differences in thickness. As we measured both transmission and reflection, it is now possible to calculate \(\sigma_1(\omega) \) directly. The temperature dependence of \(\sigma_1(\omega) \) is plotted in Fig. 4. The upper panel shows \(\sigma_1(\omega) \) of YBCO\(_6\) as a reference for the substituted samples. The absolute value of \(\sigma_1(\omega) \) is quite similar for all four compounds. They are all very close to the antiferromagnetic limit, \(\sigma_1(\omega) \) is about two to three (five) orders of magnitude smaller than in YBCO\(_{6.1}\) (YBCO\(_7\)). Also the basic features are quite similar for the four compounds. Below 1200 cm\(^{-1} \) we can observe some multi-phonon bands (the upper limit

![Graph](image-url)

Fig. 3. MIR transmission of single crystals of YBa(CuZn)O\(_6\) \((d = 35 \mu m) \), PrYBCO\(_6\) \((d = 126 \mu m) \) and GdYBCO\(_6\) \((d = 231 \mu m) \) for \(E \| ab \) at \(T = 4 K \).

![Graph](image-url)

Fig. 4. MIR \(\sigma_1(\omega) \) of YBCO\(_6\), YBa(CuZn)O\(_6\), PrYBCO\(_6\) and GdYBCO\(_6\) for \(E \| ab \) as calculated from \(T(\omega) \) and \(R(\omega) \). The remnants of interference fringes (e.g., for Zn) are due to the finite opening angle of the light beam and the different incident angles for \(R(\omega) \) and \(T(\omega) \) (\(R \) cannot be measured at absolute normal incidence).
for two-phonon absorption is at about 1350 cm\(^{-1}\)),
to which we will come back later. Most features at
higher energies have a magnetic origin. One excep-
tion is the sharp peak at 2275 cm\(^{-1}\) in PrYBCO\(_6\),
which recently has been assigned to an intermulp-
let transition in the Pr\(^{3+}\) ion [11]. The temperature
dependence of this absorption feature shows clear
evidence of an interaction between Cu and Pr spins

Common to all four compounds are the sharp
peak at about 1436 cm\(^{-1}\), the broad feature at
about 2800 cm\(^{-1}\) and a second broad peak at high-
er energies. Some of us had assigned these three
peaks to direct magnon absorption [12], which can
be weakly allowed by spin–orbit coupling. In this
scenario, the feature at 1436 cm\(^{-1}\) was explained as
absorption of a single magnon of the optical
branch. However, recent neutron scattering experi-
ments on YBCO\(_x\) (\(x = 6.2\) [13] and \(x = 6.15\) [14])
show that the optical magnon branch has an energy
of about 520 cm\(^{-1}\) at \(k = 0\), which means that we
need an alternative explanation. A peak similar to
the one at 2800 cm\(^{-1}\) was found in single-layer
cuprates as well [1] and has been described success-
fully as bimagnon-plus-phonon absorption [2].
The term bimagnon denotes a bound state of two
magnons, and the combination with a phonon is
necessary because a bimagnon does not have a
dynamic dipole moment due to the inversion sym-
metry between spins on adjacent copper sites. Be-
sides the above mentioned case of the \(S = \frac{1}{2}\)
2D cuprates, this bimagnon-plus-phonon approach
has also been used to describe absorption features
in La\(_2\)NiO\(_4\) (\(S = 1\), 2D) [15,16] and Sr\(_2\)CuO\(_3\)
(\(S = \frac{1}{2}\), 1D) [17,18]. The application of this scen-
tario to the bilayer cuprates will be given in a for-
coming paper [6].

Here, we only want to treat the dependence of
the peak energies on substitution and the tempera-
ture dependence. The peak values at \(T = 4\) K are
summarized in Table 1. All three peaks shift to
lower energies on rare earth or Zn substitution (in
the Zn and the Pr substituted samples it is not
possible to determine the position of the highest
peak). This redshift has to be explained by either
a redshift of the phonon part or a decrease of the
exchange coupling constants \(J\) (in-plane) and/or
\(J_{12}\) (intra-bilayer). In the case of Zn, the phonon

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YBCO(_x)</td>
<td>1436.2</td>
<td>2795</td>
<td>3780</td>
</tr>
<tr>
<td>YBa(CuZn)O(_6)</td>
<td>1435.5</td>
<td>2775</td>
<td>(3260)</td>
</tr>
<tr>
<td>GdYBCO(_x)</td>
<td>1434.8</td>
<td>2725</td>
<td>3750</td>
</tr>
<tr>
<td>PrYBCO(_6)</td>
<td>1432.7</td>
<td>2520</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

Peak frequencies (\(T = 4\) K) of the most prominent MIR excita-
tions

energies hardly change and the shifts have to be due
to a softening of the exchange constants caused by
the non-magnetic Zn impurities. These will also
give rise to some broadening, which indeed is ob-
served. The broadening might be the reason why
we do not see a clear peak at about 3800 cm\(^{-1}\) any
more. In the case of the rare earths, the increase in
the lattice parameter \(a\) due to the larger radius of
the rare-earth ions will influence both the phonon
frequencies and the exchange constants. Some
broadening could arise from the disorder caused by
the 20% of Y on the rare-earth site. This disorder
divides the peak at 2795 cm\(^{-1}\) for both the Gd and
the Pr substituted samples, which both show – be-
sides the redshifted main peak – remnants of the
feature of pure YBCO\(_x\). Regarding the temperature
dependence, it is interesting to note that the peak at
about 2800 cm\(^{-1}\) is more sensitive to an increase in
temperature than the other two peaks of interest
here. This is evident from the 485 K data of
GdYBCO\(_x\) and also from the 300 K curve of
YBa(CuZn)O\(_6\). The stronger temperature depend-
ence of YBa(CuZn)O\(_6\) is probably related to the
lower Neél temperature, which is about 500 K [19]
for YBCO\(_x\) and which we estimate to be a little bit
higher than 300 K [20] for YBaCu\(_{2.85}\)Zn\(_{0.15}\)O\(_6\)
for our data.

Now, we want to focus on the multi-phonon
range below 1200 cm\(^{-1}\) (see Fig. 5). The detailed
shape of the multi-phonon peaks is strongly sample
dependent [12, 6], but we find three main bands
at about 700–800 cm\(^{-1}\), 850–950 cm\(^{-1}\) and
1050–1200 cm\(^{-1}\) in all samples. The most probable
contributions to these bands are combinations of
two oxygen bending modes, of an O bending and
an O stretching mode and of two O stretching
modes, respectively. The lowest band could also be
due to a combination of an O stretching and a
rare-earth mode. The strong sample dependence
Fig. 5. Comparison of the multi-phonon features below 1200 cm$^{-1}$ in YBCO$_6$ and YBa(CuZn)O$_6$.

Fig. 6. Temperature dependence of multi-phonon peaks in YBa(CuZn)O$_6$. Note that spectra at intermediate temperatures (100 and 125 K) contain the structures of both high- and low-temperature spectra at the same time.

Fig. 7. Same as Fig. 6 for the other three samples. Contrary to YBa(CuZn)O$_6$, all three samples show two separate peaks at about 1150 cm$^{-1}$ for all temperatures presented here.

of the exact shape of the three bands leads us to the conclusion that most of these absorption features are forbidden and only weakly allowed due to the presence of some impurities. A comparison of the strength of the multi-phonon absorption in YBCO$_6$ and YBa(CuZn)O$_6$ supports this view, as the spectral weight of especially the second and third band increases considerably by Zn substitution. A similar increase in the spectral weight of multi-phonons was observed upon substitution of several percent of Cu by Co [21].

But, Zn impurities also give rise to a surprising temperature dependence of the multi-phonon band between 1050 and 1200 cm$^{-1}$ (see Fig. 6 for YBa(CuZn)O$_6$ and Fig. 7 for the three other samples). In YBa(CuZn)O$_6$ this band at $T = 300$ K consists of two main peaks at about 1060 and 1155 cm$^{-1}$, both of which split at lower temperatures. However, at intermediate temperatures (125 K (100 K) for the peak at 1060 cm$^{-1}$ (1155)) we observe a superposition of the 300 K and the 4 K data. The spectra of the other three samples show the same splitting at about 1150 cm$^{-1}$ at low temperature, but the peaks remain split at all temperatures presented here. However, the 200 and 300 K YBCO$_6$ curves resemble the 100 and 125 K YBa(CuZn)O$_6$ data. Possibly, this reflects the difference in the Neél temperature, in which case the splitting would be related to spin-lattice
interactions. The features at about 1060 cm\(^{-1}\) are unique to YBa\textsubscript{2}(CuZn)O\(_6\).

In conclusion, we presented the temperature dependence and the influence of Zn, Pr and Gd substitution on (multi-) phonons and bimagnon-plus-phonons in YBCO\(_6\). We find phonon side bands, indications of spin-lattice interactions and a softening of bimagnon-plus-phonon peaks.

References