
PHYSICAL REVIEW B 89, 184514 (2014)

Interface superconductivity in LaAlO3-SrTiO3 heterostructures
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The interface superconductivity in LaAlO3-SrTiO3 heterostructures reveals a nonmonotonic behavior of the
critical temperature as a function of the two-dimensional density of charge carriers. We develop a theoretical
description of interface superconductivity in strongly polar heterostructures, based on the dielectric function
formalism. The density dependence of the critical temperature is calculated, accounting for all phonon branches
including different types of optical (interface and half-space) and acoustic phonons. The longitudinal-optic- and
acoustic-phonon mediated electron-electron interaction is shown to be the dominating mechanism governing the
superconducting phase transition in the heterostructure.
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I. INTRODUCTION

Recent progress in the development of multilayer structures
based on complex oxides [1] provides the means to generate a
two-dimensional electron gas (2DEG) at the oxide interfaces.
The discovery of superconductivity at the LaAlO3-SrTiO3

interface [2–6] has stimulated increasing interest in the
experimental and theoretical study of these structures.

Because strontium titanate is a highly polar crystal, the
electron-phonon mechanism of superconductivity seems to be
the most promising for the explanation of the experimental data
on superconductivity in the LaAlO3-SrTiO3 heterostructures.
The Migdal-Eliashberg theory of superconductivity [7,8], as
well the BCS theory, is valid when the phonon frequencies are
much smaller than the electron Fermi energy. This is not the
case for polar crystals with sufficiently high optical-phonon
frequencies, like strontium titanate. To tackle such systems,
nonadiabatic extensions of the theory of superconductivity
have been developed. Pietronero et al. [9–11] generalized
the Eliashberg equations to include non-adiabatic corrections
beyond Migdal’s theorem. The method developed by Kirzhnits
et al. [12] (see also Refs. [13–15]) is focused on the supercon-
ductivity caused by the Fröhlich electron-phonon interaction
with polar optical phonons. It uses the total dielectric function
of a polar crystal. The Pietronero and Kirzhnits approaches are
complementary: the former is nonperturbative with respect
to the coupling strength and perturbative with respect to
the Debye energy, while the latter is weak-coupling but
nonperturbative with respect to the optical-phonon energies.

Strontium titanate is a unique example of a polar medium in
which superconductivity has been detected at very low carrier
densities, so that the optical-phonon energies can be larger
than the Fermi energy. Moreover, as found in Refs. [16,17],
the electron–LO-phonon coupling constant in SrTiO3 is not
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very large (herein LO denotes longitudinal optic). Therefore,
for the investigation of superconductivity in a LaAlO3-SrTiO3

(LAO-STO) heterostructure, the Kirzhnits method seems to
be appropriate. Here, we apply the Kirzhnits method for a
multilayer structure with several polar layers.

II. SUPERCONDUCTIVITY IN A MULTILAYER
POLAR STRUCTURE

We consider the quasi-2D electron-phonon system de-
scribed by the Hamiltonian

H =
∑

k‖

∑
σ,j

εj,n,k‖c
+
σ,j,n,k‖cσ,j,n,k‖

+ 1

2L2

∑
k‖,k′

‖

∑
q

∑
σ,j,n,σ ′,j ′,n′

Ut(n′,n)
q

× c+
σ,j,n,k‖+qc

+
σ ′,j ′,n′,k′

‖
cσ ′,j ′,n′,k′

‖+qcσ,j,n,k‖

+
∑

q

∑
λ

��q,λa
+
q,λaq,λ

+ 1

L

∑
q,λ

(γq,λaq,λ + γ +
q,λa

+
q,λ). (1)

Here aq,λ,a
+
q,λ are the phonon second quantization operators,

q is the 2D in-plane phonon wave vector, the index λ labels
phonon branches in the LAO-STO structure, and �λ(q) is
the phonon frequency. Furthermore, c+

σ,j,n,k‖ and cσ,j,n,k‖
are, respectively, the creation and annihilation operators for
electrons with spin σ , in-plane wave vector k‖, band index
j , and size-quantization quantum number n. The energy
corresponding to the single-particle state |j,n,k‖〉 is εj,n,k‖ .

L is the lateral size of the system, and U
(n′,n)
q is the matrix

element of the electron-electron interaction potential,

U (n′,n)
q =

∫
dz

∫
dz′ŨC(q,z,z′)

× ϕn(z)ϕn′(z)ϕn(z′)ϕn′ (z′). (2)
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The electron-phonon interaction amplitudes can be written as

γq,λ =
∑

j,n,j ′,n′
�

(n′,n)
q,λ

∑
σ

c+
σ,j ′,n′,k‖+qcσ,j,n,k‖ , (3)

where �
(n′,n)
q,λ = 〈ϕn′ |�λ(q,z)|ϕn〉 is the matrix element of the

amplitude �λ(q,z) that we will specify below. The index λ

labels the phonon branches of the multilayer structure. In
the calculations, we assume that, in the LaAlO3-SrTiO3 het-
erostructure under consideration, the electron gas is confined to
a very thin layer, ∼ 2 nm. Consequently, only the lowest energy
subband (n = 0) is filled, and transitions to higher subbands
can be neglected.

The electron-electron interaction potential ŨC(q,z,z′), the
equations for the eigenfrequencies of the interface modes, and
the amplitudes of the electron-phonon interaction in a mul-
tilayer structure are derived within the dielectric continuum
approach, accounting for the electrostatic boundary conditions
in a similar way as in Refs. [18,19]. We use Feynman units:
� = 1, mb = 1, ω0 = 1, where ω0 is an effective LO-phonon
frequency (taken equal to the highest of the LO-phonon
frequencies of SrTiO3). The potential ŨC(q,z,z′) is

ŨC(q,z,z′) = 1

L

2
√

2πα0

ε1,∞q
[e−q|z−z′ | + CIe

q(z+z′)], (4)

expressed using the dimensionless Coulomb coupling constant

α0 = e2

2�ω0

(
2mbω0

�

)1/2

. (5)

The coefficient CI depends on the dielectric constants of the
media constituting the heterostructure. For the system without
an electrode at the LaAlO3-vacuum interface, CI is

CI = ε1,∞ε3,∞ − ε2
2,∞ + ε2,∞(ε1,∞ − ε3,∞) coth(ql)

ε1,∞ε3,∞ + ε2
2,∞ + ε2,∞(ε1,∞ + ε3,∞) coth(ql)

, (6)

where l is the width of the LaAlO3 layer. The index s = 1,2,3
in the dielectric constant εs,∞ labels the layers: s = 1 for the
SrTiO3 substrate, s = 2 for the LaAlO3 layer, and s = 3 for
the vacuum. For the system with an electrode, CI is obtained
from (6) in the limit ε3,∞ → ∞.

We take into account the following phonon branches: (1) the
interface optical phonons, (2) the half-space optical phonons,
and (3) the acoustic phonons. For the interface optical phonons,
the eigenfrequencies are found from the equation

ν1(�λ)ν2(�λ) − μ2
2(�λ) = 0 (7)

with the functions

ν1(�λ) = ε1(�λ) + ε2(�λ) coth(ql), (8)

ν2(�λ) = ε2(�λ) coth(ql) + ε3(�λ), (9)

μ2(�λ) = ε2(�λ)

sinh(ql)
. (10)

The amplitudes of the electron-phonon interaction with these
interface phonon modes are

�λ(q,z) = (2
√

2πα0)1/2

(
1

q

�λ

D(�λ)

)1/2[
eqz�(−z) + ν1(�λ)
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+�(z)�(l − z)

(
sinh[q(l − z)]

sinh(ql)
+ ν1(�λ)

μ2(�λ)

sinh(qz)

sinh(ql)

)]
, (11)

where �(z) is the Heaviside step function, and the factor
D(�λ) is

D(�λ) = (ε1,0 − ε1,∞)

(
�λω1,TO

�2
λ − ω2

1,TO

)2

+ (ε2,0 − ε2,∞)

(
�λω2,TO

�2
λ − ω2

2,TO

)2

×
((

ν1(�λ)
μ2(�λ)

)2 + 1
)

cosh(ql) − 2 ν1(�λ)
μ2(�λ)

sinh(ql)

+ (ε3,0 − ε3,∞)

(
�λω3,TO

�2
λ − ω2

3,TO

)2(
ν1(�λ)

μ2(�λ)

)2

. (12)

For the structure with an electrode, we set ε3(ω) → ∞ in the
above formulas.

Because the 2DEG layer is positioned at the SrTiO3 side
of the interface, the half-space phonons of strontium titanate
can contribute to superconductivity. The frequencies of the
half-space phonons are the same as for the bulk LO phonons.
The amplitudes of the electron-phonon interaction for the
half-space phonons differ from those for the bulk LO phonons

only by the boundary condition of zero amplitude at the
interface. Although the half-space phonons turn out to give
a relatively very small contribution to the resulting phonon
mediated interaction potential, we take them into account for
completeness. For the acoustic-phonon contribution, we use
the frequencies and interaction amplitudes for the deformation
potential from Ref. [20]:

ωq = vq, (13)

V (ac)
q = (4παac)1/2 �

2

mb

q1/2 (14)

with the dimensionless coupling constant

αac = D2m2
b

8πρ�3v
, (15)

where ρ is the mass density of strontium titanate, D is the
deformation potential, and v is the sound velocity.

The calculation of the superconducting transition tempera-
ture is performed following the scheme of Refs. [12–15] using
the gap equation

�(ω) = −
∫ ∞

−εF

dω′

2ω′ tanh

(
βω′

2

)
�(ω′)K(ω,ω′) (16)
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with the kernel function

K(ω,ω′) = mb

π3

∫ π

0
dϕ

∫ ∞

0
d�

|ω| + |ω′|
�2 + (|ω| + |ω′|)2

× V tot(q,i�), (17)

where q =
√

p2 + k2 − 2pk cos ϕ, p = √
2mb(ω + εF ), k =√

2mb(ω′ + εF ), mb is the effective mass for the motion along
the surface, and V tot(q,i�) is the total effective electron-
electron interaction potential. The energy ω is counted from
the Fermi energy εF . The kernel function (17) is essentially
energy-nonlocal, as distinct from the BCS and Migdal-
Eliashberg approaches, since it is provided by a retarded
effective electron-electron interaction V tot(q,i�), through the
plasmon-phonon excitations. Consequently, the frequency
dependence of the gap �(ω) can differ from that within the
BCS or Migdal-Eiashberg pictures.

The gap equation (16) with the effective interaction po-
tential described above allows for the determination of the
gap function �(ω) and the critical temperature in a LaAlO3-
SrTiO3 heterostructure. In the low-temperature range, when
the thermal energy kBT is much lower than the Fermi energy
of the charge carriers εF , the approximation method proposed
by Zubarev [21] allows us to find the normalized gap function
φ(ω) ≡ �(ω)/�(0) as a numeric solution of the Fredholm
equation,

φ(ω) +
∫ ∞

−εF

dω′

2|ω′|
[
K(ω,ω′) − K(ω,0)K(0,ω′)

K(0,0)

]
φ(ω′)

= K(ω,0)

K(0,0)
. (18)

The critical temperature is given by the expression

Tc = 2

π
eγ εF exp

(
−1

λ

)
≈ 1.14εF exp

(
−1

λ

)
, (19)

where γ = 0.577216 . . . is the Euler constant, and the param-
eter λ is determined explicitly through the normalized gap
parameter,

1

λ
= −

{
1

K(0,0)
+

∫ ∞

−εF

dω

2|ω|

×
[
K(0,ω)

K(0,0)
φ(ω) − �(εF − ω)

]}
(20)

with the Heaviside step function �(εF − ω). Formulas (18)
and (19) describe the relation between the kernel function
K(ω,ω′), the normalized gap function φ(ω), and the critical
temperature.

In the present treatment, the effective electron-electron
interaction includes contributions from both optical and
acoustic phonons. Since the Kirzhnits theory assumes the
weak-coupling regime, we suggest that the effective phonon
mediated interaction due to the acoustic phonons can be taken
into account in an additive way with respect to the combined
contribution of Coulomb interaction and optical phonons. The
total effective interaction V tot(q,�) can be thus approximated
by the sum

V tot(q,i�) = V R(q,i�) + V ac(q,i�), (21)

where V R(q,�) is the effective interaction described in terms
of the total dielectric function, and V ac(q,i�) is the effective
interaction due to the acoustic phonons.

The effective potential V R(q,i�) in a quasi-2D system
is determined following Ref. [15]. Within the random-phase
approximation (RPA) [22], the relation between the effective
potential taking into account dynamic screening, V R(q,i�),
and the effective potential without screening, V R

0 (q,i�), is

V R(q,i�) = V R
0 (q,i�)

1 + V R
0 (q,i�)P (1)(q,i�)

, (22)

where P (1)(q,i�) is the polarization function of a free 2DEG.
Here, we use the RPA-polarization function [13,22,23]. The
nonscreened potential V R

0 (q,i�) is a sum of a Coulomb
contribution and a contribution from the phonon mediated
interaction between the two electrons:

V R
0 (q,i�) = U (0,0)

q −
∑

λ

2�λ(q)

�2
λ(q) + �2

∣∣�(0,0)
q,λ

∣∣2
(23)

where the Coulomb contribution U
(0,0)
q is given by the expres-

sion (2), and the effective optical phonon mediated interaction
is approximated by the Bardeen-Pines form [24,25]. For the
acoustic-phonon contribution to the effective potential, we also
apply the Bardeen-Pines approximation, as in Ref. [26]:

V ac(q,i�) = −1

�

∣∣V (ac)
q

∣∣2 2ωq

ω2
q + �2

. (24)

There are indications from experiments [2,3,5,6] that
the superconducting phase transition in a LaAlO3-SrTiO3

heterostructure is governed by the Berezinskii-Kosterlitz-
Thouless (BKT) mechanism [27–29]. It is shown in Refs. [3,6]
that the temperature dependence of the resistance just above
Tc is specific for a BKT phase transition, corresponding to the
2D nature of the superconducting system.

The critical temperature of the BKT phase transition is
determined by the equation [28] which includes the pair
superfluid density ρs(T ):

TBKT = π

4

�
2

kBmb

ρs(TBKT). (25)

The superfluid density monotonously decreases with increas-
ing temperature, and turns to zero at T = Tc. Therefore,
the critical temperature TBKT must be necessarily lower than
Tc. In the case when the BKT transition is present in the
LaAlO3-SrTiO3 heterostructure, Tc can be interpreted as the
pairing temperature at which the preformed pairs appear. In
the LaAlO3-SrTiO3 heterostructures, the superfluid density ns

extracted from the BKT equation (25) is several orders of
magnitude lower than the actual electron density: ns � n0.
This inequality can be satisfied only when the gap parameter �

is very small compared to its value at T = 0, and, consequently,
when (1 − TBKT/Tc) � 1. Therefore, as already concluded in
Ref. [2], Tc and TBKT are extremely close to each other in the
LaAlO3-SrTiO3 heterostructures.

III. RESULTS AND DISCUSSION

For the numerical calculations, we use the set of mate-
rial parameters already used in earlier works [17,26]. The
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dielectric constants for SrTiO3 are ε1,∞ = 5.44 and ε1,0 = 186
(calculated using the Lyddane-Sachs-Teller relation for the
LO- and TO-phonon frequencies and the ratio ε0/ε∞). The
effective mass for the present calculation has been taken as
mb = 1.65m0 [17] (where m0 is the electron mass in vacuum).
The dielectric constants used for LaAlO3 are from Ref. [30]:
ε2,∞ = 4.2 and ε2,0 = 24. The only material parameter which
is not yet well determined is the acoustic deformation potential
D in strontium titanate. It should be noted that the deformation
potential responsible for the interaction of an electron with
the acoustic phonons is the “absolute” rather than “relative”
deformation potential [31–33]. In the literature, we can find
several different suggestions on the values of the deformation
potential in strontium titanate. Koonce et al. [34] applied the
value D ≈ 15 eV to fit the experimental data on Tc in bulk
strontium titanate. In Ref. [35] the deformation potential is
estimated to be D ≈ 2.9 eV on the basis of the value of the
Fermi energy of the electrons. In Ref. [36] the value D ≈ 4 eV
is calculated on the basis of first-principles density functional
theory, which seems to be more reliable than two other values,
because the many-valley band model of Ref. [34] was not
confirmed by later studies, and the deformation potential of
Ref. [35] is a rough estimation using the Fermi energy of
the electrons. As we discuss below, the results from our
theory compare favorably with D values of [35,36], but are
incompatible with the large D value used in [34].

Here we have calculated Tc in the LaAlO3-SrTiO3 het-
erostructure using several values of the deformation potential:
D = 3 eV, D = 4 eV, and D = 5 eV. They seem to be
physically reasonable, because they lie in the same range as
the values used in Refs. [35,36]. For the comparison of the
calculated critical temperatures with the known experimental
data, we use in the numeric calculations the model of the
LaAlO3-SrTiO3 heterostructure accounting for the presence
of an electrode at the oxide layer.

In Fig. 1, the kernel function K(ω,ω′) is plotted for the
set of parameters indicated above, choosing the deformation
potential D = 4 eV suggested in Ref. [36]. This kernel
function is qualitatively similar to the kernel function for a 2D
electron gas from Ref. [14]. There exists a distinction between

FIG. 1. (Color online) Kernel function K(ω,ω′) for the LaAlO3-
SrTiO3 structure using the set of parameters described in the text.

the kernel functions for the 2D and 3D systems within the
Kirzhnits-Takada method: for a 3D electron gas, the kernel
function K(0,ω) tends to zero when ω → −εF , achieving a
local maximum in the interval −εF < ω < 0. In contrast, for
a 2D electron gas, K(ω,ω′) is a monotonically decreasing
function of ω and ω′ in the range of negative frequencies.

As explained in Refs. [13–15], superconductivity in an
electron-phonon system can exist despite the fact that the
kernel function K(ω,ω′) is positive for all frequencies. The
kernel for energies larger than εF is dominated by the Coulomb
repulsion between two electrons whose spatial distance is
small, while the behavior of the kernel near the Fermi surface
is due to both the Coulomb interaction and the attraction
mediated by the plasmon-phonon excitations, between two
electrons whose distance is rather large. Consequently, when,
for example, K(εF ,0) is much larger than K(0,0), the two
electrons can avoid the region of the Coulomb repulsion and
form a Cooper pair. We can see that, although K(0,0) is
not exactly equal to zero, K(ω,ω′) achieves its minimum at
ω,ω′ = 0, facilitating pairing.

The measured critical temperatures are taken from several
sources [2–4]. The experimental work by Reyren et al. [2]
contains only two points: Tc ≈ 0.1 K for a 2D density of the
electrons n ≈ 1.5 × 1013 cm−2, and Tc ≈ 0.2 K for n ≈ 4 ×
1013 cm−2. The paper [3] represents the critical temperature
as a function of the gate voltage, and the dependence of the
modulation of the electron density δn(V ) on the gate voltage.
The total electron density is related to the modulation δn(V ) as
n(V ) = n0 + δn(V ), where n0 ≈ 4.5 × 1013cm−2, according
to Ref. [3]. Using the experimental data for Tc(V ) and n(V )
represented in these figures, we obtain the dependence Tc(n)
for the experiment [3]. We also include recent experimental
results on the superconductivity in the LaAlO3-SrTiO3 het-
erostructure [4].

In Fig. 2(a), the critical temperatures as a function of the
2D carrier density calculated in the present work are compared
to the experimental data for Tc(n) discussed above. It is
worth noting that there exists a substantial difference between
experimental values of Tc obtained in different experiments.
However, they all are of the same order of magnitude and lie
in the same range of the carrier densities.

The observed differences of the experimental results on
the critical temperatures in the LaAlO3-SrTiO3 heterostruc-
tures can be explained as follows. In different experiments
[2–4], the LaAlO3-SrTiO3 heterostructures have been grown
independently. Therefore those heterostructures can at least
slightly differ from each other. The thermal energy kBTc

is extremely small compared to the characteristic energies
involved in the superconducting phase transition: the Fermi
energy of the electrons and the LO-phonon energies (which
both are of order ∼100 meV). Under these conditions, the
critical temperatures can be very sensitive to relatively small
difference of the internal properties of the fabricated het-
erostructures. Additional factors (e.g., disorder, local phonons,
defects, etc.) can substantially influence Tc. Moreover, also
even the critical temperatures for bulk strontium titanate
measured in different experiments [34,37] differ substantially
from each other. Consequently, the relatively large variation
of the experimental results on the critical temperature in
LaAlO3-SrTiO3 heterostructure is not surprising. Despite that
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(a)

(b)

FIG. 2. (Color online) (a) Critical temperature for the LaAlO3-
SrTiO3 heterostructure as a function of the 2D electron density,
compared to the experimental data extracted from Refs. [2–4]. (b)
The calculated critical temperatures divided by the Fermi energy εF ,
plotted as a function of n1/2.

uncertainty, the measured critical temperatures in different
experiments are of the same order.

We can see that, for each D, the curve is close to only few
data points. However, (i) experimental data are obtained with a
substantial numeric inaccuracy, and (ii) experimental data from
different sources do not agree even with each other. It should
be noted also that, since the thermal energy corresponding
to the critical temperature in the LAO-STO structure is very
small with respect to other energies participating in the
superconductivity (the optical-phonon energies and the Fermi
energy), even a small uncertainty of these parameters can
then lead to a significant change of the critical temperature.
Our calculation, performed without fit using parameter values
known from literature, yields the critical temperatures within
the same range as in the experiments. We can therefore
conclude that, taking into account the uncertainty of the
experimental results on the critical temperatures, the suggested
theoretical explanation of the superconducting phase transition
in the LaAlO3-SrTiO3 heterostructures leads to tentative
agreement with experiment.

We can see different regimes of Tc as a function of density
in Fig. 2. First, the critical temperature exhibits almost linear
dependence at small n up to n ∼ 1013 cm−2. After reaching the
maximum, as seen from Fig. 2(b), the critical temperature falls
at high densities as ∼ n exp(−c

√
n) with a positive constant

c depending on the parameters of the system. This density

dependence of Tc for low and high densities can be explained
as follows.

In the limit of low densities, the effective interaction
potential V R(q,i�) given by (22) tends to the non-screened
effective interaction potential V R

0 (q,i�) that does not depend
on the density. Also the contribution V ac(q,i�) to the total
effective interaction due to the acoustic phonons is density-
independent. Therefore at low densities the parameters λ tends
to a constant depending on the material parameters of the
system. According to (19), the critical temperature in the
low-density limit is proportional to the carrier density.

This result has a clear physical interpretation. Let us
compare (19) with the known BCS expression [38],

Tc ≈ 1.14�ωD exp

(
− 1

N (εF )V

)
, (26)

where ωD is the Debye frequency, N (εF ) is the density of
states at the Fermi energy, and V is the model BCS matrix
element. The BCS theory describes the adiabatic regime
when �ωD � εF , and pairing occurs for the electrons whose
energies lie in the layer of width δε ∼ �ωD near the Fermi
energy. As a result, Tc ∝ �ωD within the BCS picture. In
contrast, in strontium titanate and in the LaAlO3-SrTiO3

heterostructure at low densities, the anti-adiabatic regime
is realized: εF � �ωL,j , where ωL,j is an optical-phonon
frequency. In the anti-adiabatic regime, all electrons participate
in the superconductivity. Therefore the factor �ωD in the
adiabatic regime corresponds to the factor εF in the anti-
adiabatic regime.

Because in the anti-adiabatic regime all electrons contribute
to superconductivity, the parameter λ hardly can be interpreted
as N (εF )V . In a non-adiabatic regime λ must be, in general,
a functional of the density of states for all energies 0 < ε <

εF . However, the density of states for a 2D system and for
a sufficiently low energy (where the band nonparabolicity is
relatively small) is

N (ε) = mb

π�2
, (27)

so that N (ε) (and hence also λ) does not depend on the
carrier concentration at low concentrations. Thus the aforesaid
qualitative physical estimation leads to the the low-density
behavior Tc(n) ∝ n, in agreement with the result obtained in
the present work.

In the opposite regime of high carrier densities, the plasma
frequency can exceed both the Fermi energy and the optical
phonon energies. In this regime, the plasmon mechanism of
superconductivity [14] must dominate. According to Ref. [14],
the critical temperature for an electron gas in 2D with the
effective mass mb and the dielectric constant ε due to the
plasmon mechanism can be modeled by an analytic expression,

Tc = 2

π
eγ εF exp

[
− (1 + 〈F 〉)2

〈F 2〉 − K(0,0)

]
(28)

with the averages

〈A〉 ≡
∫ εF

−εF

dω

2|ω|A(ω) (29)
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and the function

F (ω) = 1

4πgv

√
qTF

pF

B

(
1

4
,
1

2

)√
|ω|
εF

. (30)

Here, B(x,y) is the Euler beta function, gv is the conduction
band degeneracy, pF is the Fermi momentum, and qTF is the
Thomas-Fermi wave vector. For a 2D electron gas, qTF =
2gve

2mb/ε does not depend on the carrier density. Here, the
factor gv is equal to 1 because the conduction band in SrTiO3

is split due to the spin-orbit interaction [39].
After the integration in (29), the critical temperature (28)

takes the form

Tc = 2

π
eγ εF exp

[
− (1 + 2C)2

C2 − K(0,0)

]
, (31)

where C is given by

C = 1

2π
B

(
1

4
,
1

2

)√
qTF

pF

. (32)

The upper bound for the density when Tc = 0 is determined
by the equation

C2 − K(0,0) = 0. (33)

The parameter C is proportional to n−1/4, and C � 1 for
sufficiently high densities. Therefore in the high-density range,
but for densities smaller than that determined by (33), the
model critical temperature (28) due to the plasmon mechanism
behaves approximately as

Tc ≈ 2

π
eγ εF exp

(
−1.43554

pF

qTF

)
. (34)

Since pF = √
2πn, the estimation (34) following Ref. [14]

is in agreement with the critical temperature obtained in the
present work, as seen from Fig. 2(b). In the figure, the ratio
kBTc/εF is plotted in the logarithmic scale as a function of
n1/2, focusing at the high-density range (larger than in the
experiments [2–4]). We can see that, at relatively small acoustic

deformation potential D = 3 eV, the dependence ln Tc as a
function of n1/2 is almost linear for high densities. For larger
D, the acoustic-phonon mechanism stronger influences the
density dependence of Tc leading to deviations from the purely
plasmon picture.

IV. CONCLUSIONS

In conclusion, we have reformulated the Kirzhnits method
for a multilayer structure with several polar layers. The de-
veloped technique is capable to describe superconductivity in
multilayer structures, where the electrostatic electron-electron
interaction, the optical-phonon spectra, and the amplitudes
of the electron-phonon interaction are modified compared to
bulk. In the present treatment, all phonon branches existing in
the multilayer structure are taken into account.

We have found that, at low densities, the critical temper-
ature is well described by a BCS-like expression with the
Fermi energy instead of the Debye energy. This is a direct
consequence of the anti-adiabatic regime, which occurs at low
carrier densities. At high densities, the density dependence of
the critical temperature shows the domination of the plasmon
mechanism of superconductivity.

The obtained agreement of the calculated critical tem-
peratures with experiment gives support to the hypothesis
that the mechanism of superconductivity is provided by the
electron–optical-phonon interaction (see, e.g., [40]), at least in
the multilayer structure analyzed in the present work.
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